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ABSTRACT: The neuromodulators dopamine (DA) and serotonin
(S-hydroxytryptamine; S-HT) are similar in a number of ways. Both
monoamines can act by volume transmission at metabotropic receptors
to modulate synaptic transmission in brain circuits. Presynaptic
regulation of S-HT and DA is governed by parallel processes, and
behaviorally, both exert control over emotional processing. However,
differences are also apparent: more than twice as many S5-HT receptor
subtypes mediate postsynaptic effects than DA receptors and different
presynaptic regulation is also emerging. Monoamines are amenable to
real-time electrochemical detection using fast scan cyclic voltammetry
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(FSCV), which allows resolution of the subsecond dynamics of release
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greatly enriched understanding of DA transmission and has facilitated

an integrated view of how DA mediates behavioral control. However, technical challenges are associated with FSCV
measurement of 5-HT and understanding of S-HT transmission at subsecond resolution has not advanced at the same rate. As a
result, how the actions of S-HT at the level of the synapse translate into behavior is poorly understood. Recent technical advances
may aid the study of 5-HT in real-time. It is timely, therefore, to compare and contrast what is currently understood of the
subsecond characteristics of transmission for DA and 5-HT. In doing so, a number of areas are highlighted as being worthy of

exploration for S-HT.
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Since the existence of serotonin (S-HT, S-hydroxytrypt-
amine) was confirmed in the brain 60 years ago, it has been
the subject of intense study.' S-HT is implicated in sensory,
motor, emotional, and cognitive processing and is thought to be
involved to some extent in most psychiatric disorders.” The
most well-identified functions of 5-HT are its involvement in
anxiety, depression, and impulsivity. Accordingly, a detailed
knowledge of the pharmacological and cellular effects of
antidepressants, anxiolytics, and other psychotropic drugs that
target the 5-HT system has emerged. However, how the effects
of these drugs translate into raised mood or decreased anxiety is
not well understood. Furthermore, how different behavior—
brain 5-HT level associations fit together remains unclear. For
instance, anxiolysis on reducing brain 5-HT is well established,
suggesting that 5-HT increases anxiety.3’4 However, anxiety is
often comorbid with depression which is classically associated
with low 5-HT*"” (but see ref 8 for a thorough discussion of
the conflicting findings regarding S-HT in depression). Also,
SSRIs effectively treat both disorders. Therefore, no unified
relationship between S-HT levels and behavior is yet
established. Indeed, the years of research that have come
before could indicate that a simple relationship does not exist.
However, it is also possible that studies to date have not
provided a sufficiently detailed understanding of 5-HT signaling
on a time scale that is commensurate with neuronal
transmission. An understanding of the detailed dynamics of
S-HT might therefore clarify how 5-HT governs behavior.
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Mesostriatal dopamine (DA) transmission has been studied
for a comparable length of time to 5-HT but understanding of
the subsecond characteristics of DA release and reuptake, and
how these dynamics shape behavior, is better defined. One
reason for this is that exploration of mesostriatal DA
transmission can be studied with high temporal resolution.
Both 5-HT and DA are amenable to electrochemical detection
using fast scan cyclic voltammetry (FSCV), which is unique in
its ability to resolve release and reuptake of identified
monoamines evoked by individual action potentials.”™'> By
contrast to DA, technical challenges facing the voltammetric
study of S-HT'®'* have meant that S-HT transmission has
been traditionally studied using microdialysis, for example, refs
15 and 16. Although microdialysis studies are directly
responsible for current understanding of 5-HT transmission,
this technique lacks the ability to resolve individual trans-
mission events as it samples on a time scale of many minutes.
Because of this, the subsecond characteristics of S-HT
transmission are poorly understood.

Recent studies have successfully applied FSCV to the study
of S-HT in vivo. These and other technical advances (e.g,
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optogenetics) will facilitate and renew investigation of S-HT
transmission at a subsecond resolution. Therefore, it is timely
to examine where attention might be best directed. The
purpose of this Review is to compare current understanding of
the real-time dynamics of 5S-HT and DA transmission and how
such understanding has contributed to models of behavioral
control. In doing so, areas worthy of exploration in the study of
S-HT transmission are highlighted. In defining the focus of the
Review, it is worth noting two points. First, areas worthy of
investigation are put forward only as a starting point for
exploration in light of newly available techniques. The intention
is not to overlook the many differences between the DA and $-
HT systems nor is it to advocate restricting the study of 5S-HT
within the boundaries of what is known for DA. Indeed, the fact
that S-HT is less well understood than DA could reflect
physiologically relevant and fundamental differences between
the two monoamine systems. Second, while current under-
standing of S-HT function has been driven by its pharmaco-
logical characterization, few of these studies have focused on
the subsecond dynamics of 5-HT transmission. Their
discussion is therefore beyond the scope of this Review.

B CHALLENGES TO EXPLORING FSCV DETECTION
OF 5-HT

FSCV offers the ability to selectively identify and measure
monoamine release with high temporal and spatial resolution. A
voltage waveform is applied to a carbon fiber several times per
second, providing a measurement of the monoamine present at
the surface of the carbon fiber each time. At specific
characteristic potentials in the waveform, monoamines are
oxidized or reduced, producing current. The resultant
voltammogram provides chemical identity as well as allowin%
quantification of the amount of monoamine present.'

Measurement of S5-HT using FSCV poses a number of
challenges. 5-HT adsorbs to the carbon fiber, slowing electrode
response times and distorting the magnitude of measure-
ments.'”'® Unlike DA, S-HT produces many oxidative side-
products which also adsorb to the carbon fiber, fouling the
surface and impairing S-HT detection.'”'* Major contributors
to this fouling are ascorbic acid and 5-HIAA, the predominant
metabolite of 5S-HT, which is present in concentrations of up to
3 orders of magnitude higher than 5-HT in vivo."* Therefore,
measurement of 5S-HT in vivo has been technically challenging.
One approach to solving this problem has been to study a
model organism where fouling poses less of a problem (e.g,,
Drosophila'??®); another approach has been to modify
technical parameters to optimize S-HT detection. Modifications
to the scanned waveform shape and scan rate as well as coating
carbon fibers in Nafion to prevent access of side-products to
the fiber have offered improvements.'® Such modifications also
selectively increase detection of 5-HT relative to S-HIAA and
DA."* Studies successfully applying these modifications in vivo
in the substantia nigra (SNr), which receives a relatively
selective S-HT innervation, have recently been published,
offering renewed promise for studying the dynamics of 5-HT
transmission in the intact mammalian brain.'"**"** In addition
to fouling problems, the pattern of brain S-HT innervation has
also contributed a challenge to in vivo FSCV measurement.
While FSCV allows identification of individual monoamines, it
does not allow the separate quantification of S-HT and DA
when they are simultaneously present at the electrode.
Therefore, a relatively pure S-HT or DA signal is needed for
accurate measurement (see ref 23 for further discussion of the
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criteria for identification). S-HT innervation is widespread
throughout the brain and is often interspersed with other
monoamines.”* This means that the number of brain regions in
which S-HT can be selectively detected without contamination
from other monoamines is limited. By contrast, FSCV study of
mesostriatal DA has been facilitated by the fact that DA is the
major monoamine detected in the striatum.

B FSCV INVESTIGATION OF PRESYNAPTIC
REGULATION OF DA AND 5-HT RELEASE

Influence of Neuronal Firing Patterns. DA and S-HT
neurons show different basal firing rates and regularity of firing;
however, tonic and phasic firing modes have been reported in
both populations. In DA neurons, tonic firing is characterized
by low frequency (1—9 Hz), irregular firing*® while phasic firing
consists of high frequency bursts of 2—5 spikes. Bursts usually
occur around frequencies of 20 Hz,*%% but frequencies above
100 Hz have been reported.”® For 5-HT neurons, tonic firing is
seen at 0.1-3 Hz, and it was classically defined as having
clocklike regularity.”**° However, irregular and higher firing
rates (up to 17 Hz) have now also been reported in
subpopulations of 5-HT neurons.’’ ™>* S-HT neurons also
exhibit bursts of high frequency phasic activity that can be
similar to those seen in DA neurons (2—4 spikes at 100 Hz or
greater).26’27’31_36 In the DA system, it is thought that bursting
is as important as firing frequency for determining release and
knowledge of how bursting activity changes extracellular DA
([DA],) has been essential for understanding DA func-
tion.””?’~ Understanding the significance of patterns of
activity for 5-HT release might therefore have similar benefits
for understanding S-HT function, whether this is similar to the
relationship that governs DA release or not.

Early FSCV studies exploring evoked DA in vivo
demonstrated that [DA], was related to frequency and pulse
number of evoking stimulus.’*~*' A number of mechanisms
ensure that bursting produces discrete, transient, and high
magnitude increases in extracellular DA concentrations
([DA],), termed “phasic” release. At glutamatergic synapses,
bursting causes short-term facilitation (STF) meaning release
by an action potential is augmented when it closely follows
another action potential; this is thought to result from
summation of Ca®* transients in the presynaptic terminal.**
STF has been reported for DA release in the nucleus
accumbens during burstlike stimuli and has been confirmed
to be dependent on Ca* availability.’* In addition to
facilitating release, bursting also generates greater [DA],
through uptake dependent mechanisms. Close clustering of
release events during high frequency activity reduces the time
available for uptake to act on release by each pulse, thus
allowing greater summation of DA released during the stimulus
train.*”** Finally, release evoked by bursting is less likely to self-
limit since the increases in [DA], are thought to be too
transient to activate autoreceptors.*’ As well as differences in
the presynaptic regulation of phasic versus tonic release, the
two modes are also thought to exert different postsynaptic
effects, which are discussed further below.***”

Given that 5-HT neurons exhibit bursts of activity, it might
also be the case that discrete, phasic 5-HT release can be
observed. Initial studies in vitro seemed to support this idea.
FSCV measurement of S-HT has shown that electrically evoked
5-HT does increase with frequency and pulse number in
vitro.**=>* Microdialysis measurements in vivo also show that
basal 5-HT levels increase after repeated burst-like stimulation

dx.doi.org/10.1021/cn4000605 | ACS Chem. Neurosci. 2013, 4, 704—714



ACS Chemical Neuroscience

compared to single pulse stimulation at the same frequency.>
However, microdialysis lacks the ability to resolve discrete
phasic 5-HT release. Furthermore, one recent FSCV study has
cast doubt over whether burst firing in 5-HT neurons results in
phasic release as it does for DA. Modeling of electrically evoked
SNr 5-HT release suggests that S-HT released per pulse in vivo
is around 50 times lower than that in vitro.”"*>*° The authors
went on to demonstrate that S-HT release shows less fatigue
during repeated stimulation and is less affected by inhibition of
synthesis and packaging than DA.>' They concluded that only a
small proportion of available S-HT is released by electrical
stimulation (by comparison to DA). Collectively, these findings
could suggest that S-HT release is strictly regulated in the
presence of intact circuitry, meaning that phasic S-HT release
may not result upon phasic activity. However, whether this
restricted control is due to concurrent electrical activation of
other circuits that inhibit 5-HT release is not yet clear.
Furthermore, the SNr contains a high density of SERT protein,
as well as a higher proportion of synaptic versus nonsynaptic
junctional complexes compared to other regions in the
brain.>*>° Therefore, it is possible that S-HT release in the
SNr is subject to atypical regulation and differences between in
vitro and in vivo measures seen in this region might not
translate to others. Irrespective, the disparity between findings
from slice and whole animal experiments highlights the need
for further investigation of S-HT release in vivo to identify
whether discrete, burst-driven release events could be a feature
of 5-HT neurotransmission.

Influence of Reuptake. The influence of both DA and $-
HT on postsynaptic receptors after release is limited by uptake
from the extracellular space into the presynaptic terminal.
Uptake is mediated respectivelgr by the closely related
transporters, DAT***” and SERT.*" Early in vivo FSCV studies
of DA demonstrated that the influence of uptake varied
depending on region and identified the striatum as an “uptake-
dominated” region.sg’éo This is in contrast to areas such as the
cortex and amygdala which are considered “release-dominated”.
A heterogeneous influence of uptake is also observed between
(as well as within) the subterritories of the striatum, with
uptake exerting a greater effect in the caudate putamen (CPU)
than in the nucleus accumbens (NAc).%*~%

In vivo and in vitro evidence demonstrates that DAT limits
the influence of DA in a frequency-dependent
way,3##0460.64766 The short interpulse interval within bursts
limits the effect of DAT-mediated uptake on release by each
pulse, allowing greater summation of [DA],. By contrast during
low frequency firing, uptake can more fully limit release per
pulse, better preventing [DA], summation.”® Consistent with
this role as a high frequency pass filter, DAT gene knockout
abolishes frequency dependence and causes [DA], evoked at all
frequencies to be equally high; in other words, release events
can summate unchecked even at low frequencies.®*

A similar role for SERT has been reported in vitro. Under
normal conditions evoked [S-HT], shows strong frequency-
dependence.****” However, both knockout and overexpres-
sion of SERT abolish this frequency-dependence, as does SERT
blockade.*” With SERT knockout and blockade, [5-HT],
evoked by all frequencies tends toward equally high levels,
while SERT overexpression constrains [S-HT], evoked by all
frequencies to equally low levels. These findings therefore
mirror in vivo findings for DA and DAT, indicating that a role
as a high frequency pass filter of [S-HT], is possible for SERT.
However, it is important to note that such a role for SERT has
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yet to be investigated in vivo. Recent studies indicating different
regulation of S-HT release between in vivo and in vitro
conditions mean that the physiological relevance of this role
requires direct confirmation. However, this area of exploration
provides a good example of how concepts in the DA field can
point to areas for investigation of the S-HT system.

Influence of Presynaptic Receptors on Striatal DA
Transmission. Two families of DA receptors have been
identified: D1-like (D1Rs: encompassing D1 and DS subtypes)
and D2-like receptors (D2Rs: encompassing D2-D4 subtypes).
D1Rs are positively coupled to adenylate cyclase, through G
and G,,*® while D2Rs negatively couple to adenylate cyclase
via G, As such, they exert opposing effects on the excitability
of the cells they are expressed on (for a review of the precise
coupling and effects of each receptor, see ref 69). Striatal D2Rs
function as autoreceptors on DA axons and as heteroreceptors
on striatal projection neurons and cholinergic interneurons
(ChlIs). DIRs function as heteroreceptors on MSNs and
afferent inputs into the striatum.”®”"

FSCV and amperometry studies exploring striatal D2R
autoinhibition allowed characterization of the timecourse of
action on DA release.”””> The timecourse of activation of D2Rs
reported by different studies varies from milliseconds to
seconds.*””*~7" This discrepancy might be explained by
differences in preparation (in vitro versus in vivo) as well as
species differences.** The importance of D2R control of DA
release also varies according to the region of interest with more
influence seen in axonal regions compared to midbrain.”®
Between midbrain regions, heterogeneity is also seen, with an
autoreceptor effect observed in SNc¢ but not in VTA.”S Finally,
variation in D2R autoinhibition is observed within regions and
is hypothesized to contribute to the marked variation in release
amplitude observed in the dorsal striatum.*® Autoreceptor-
induced inhibition of DA release by single pulses or very brief
trains is minimal or absent, with it being most apparent during
long trains of stimuli,*>7® suggesting high enough levels of DA
release and sufficient time is needed to activate autoreceptors.
Effects of autoreceptor activation also appear to be most
apparent at frequencies of around 20 Hz.”*®' These
observations have led to proposals that D2 autoreceptors
serve two functions: First, they limit DA released by phasic
activity. Second, their activation by phasic release depresses
subsequent tonic release, thereby enhancing contrast between
phasic and tonic release. However, this view should be
contrasted with several other points. First, modeling studies
suggest that occupancy of D2Rs increases little upon phasic
firing (see next section).*” Second, FSCV investigation of D2
autoinhibition has uncovered paradoxical facilitatory effects on
DA release, by using repeated high frequency stimulus trains
with varying interstimulus intervals.*> The relevance of these
findings for ongoing physiological patterns of activity, however,
is not yet fully understood. Third, choliner§ic modulation of
both DA release and its short-term plasticity” "> is likely to be
modulated by D2Rs expressed by Chls.”” The concerted
actions of different D2R populations on DA release in vivo are
therefore complex and not yet fully delineated. The
mechanisms through which D2 autoreceptors limit [DA], are
also subject to ongoing investigation, although changes in
release, firing and uptake are all implicated (see ref 44 for
review).

Autoreceptor control of 5-HT release is of particular interest
as its desensitization is thought to be important for the
therapeutic effects of antidepressants.**®” Multiple 5-HT
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autoreceptor subtypes exist. The somatodendritically localized
5-HT |, subtype is the best characterized, although S-HT3, S-
HT,p, S-HT g, and 5-HT i receptor subtypes are located on
terminals and are also known to mediate autoinhibition.*®
However, delineating the individual effects of each subtype has
been challenging as available ligands often bind to more than
one subtype. Early FSCV studies confirmed autoinhibitory
control of S-HT release in the dorsal raphe nucleus (DRN) and
suprachiasmatic nucleus (SCN), areas containing S-HT cell
bodies and axons, respectively.24 This control, like that for DA,
was only present during longer stimulations and showed
frequency dependence, being most apparent at 10 and 20 Hz.
By comparing different stimulus durations, the authors
concluded that released S-HT must be present for at least
400 ms to activate autoreceptors.”” Further FSCV character-
ization of these effects has shown that ligands at S-HT,
receptors best affect S-HT release in the DRN, although a
lesser control by 5S-HT 5 and 5-HTp, receptors is also present.
By contrast, control in SCN appears to be mediated by 5-HT
and S-HT |, receptors as ligands at these receptors best affected
S-HT release in this region.gg_92 In the SNr, a modest control
by S-HT | receptors has been reported, although this is only
seen during specific time windows.”*** Thus, Threlfell et al.
demonstrated that S$-HT3 receptor-mediated short-term
depression of 5-HT release could be observed when stimulus
trains were paired 2 s apart.”*

FSCV investigation of 5-HT autoinhibition is challenging in
vivo because the effects of multiple autoreceptor subtypes at
different locations may interact. However, this will be an
important part of understanding how 5-HT transmission is
controlled, since activation of autoreceptors will likely vary
between in vivo and in vitro conditions, due to differences in 5-
HT tone. Indeed, the study of DA autoreceptor function
implies different findings may be seen between in vivo and in
vitro conditions.** FSCV used in conjunction with selective
optogenetic stimulation strategies may aid in overcoming the
challenges presented by studying autoinhibitory control of S-
HT in intact circuitry.

B DIFFERENT MODES OF RELEASE MAY CAUSE
DISTINCT POSTSYNAPTIC EFFECTS

Understanding gained from FSCV study of DA has directly
contributed to an important concept in the field of striatal DA
function, namely, that different modes of DA release cause
distinct postsynaptic effects. This realization allowed under-
standing of how a broadcast DA signal that was not restricted
by the conventions of synaptic transmission could still convey
highly specific information. DA exerts effects on two major
populations of striatal projection neurons (medium spiny
neurons; MSNs), each one preferentially expressing one
subtype of DA receptor. Direct pathway MSNs express D1Rs
and project to the substantia nigra where they promote
movement by disinhibiting the thalamus. Conversely, indirect
pathway MSNs express D2Rs and inhibit movement.”>™*®
Together, these observations support the classical model of
dopamine function whereby DA promotes movement through
a DIR-dependent increase in direct pathway excitability and a
D2R-dependent reduction of indirect pathway excitabil-
ity. %7919 It is worth noting that a recent study demonstrated
concurrent activation of direct and indirect MSNs upon
movement initiation.'”" This finding is not necessarily at
odds with the idea that the indirect pathway suppresses
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movement; however, how it fits with what is understood of how
DA affects these pathways, discussed below, remains to be seen.

D1Rs exhibit low affinity for DA, while D2Rs are largely
found in a hi§h affinity state (ECsy ~ 1 uM and ~10 nM,
respectively).'”” Estimates of affinity constants and under-
standing of diffusion and uptake characteristics of DA release
from ESCV*¥*137195 have supported the idea that the
different receptors might be preferentially activated by distinct
modes of DA release.'"® Dreyer et al. formalized this model by
simulating DA receptor occupancy during tonic and phasic
firing. They found that D2R occupancy was steady during tonic
firing but reduced during phasic firing and pausing. Conversely,
DI1Rs were unoccupied during tonic firing but occupancy
increased on phasic firing.*” Supporting the idea that distinct
modes of firing have distinct postsynaptic consequences,
increasing phasic firing in DA neurons in vivo causes DIR-
dependent facilitation of evoked neural responses in ventral
striatum, while increasing tonic firing does not. Furthermore,
blocking D1Rs without increasing phasic DA activity has no
effect, su §esting that the receptors are not tonically
active.'”'™  Given that direct MSNs selectively express
D1Rs, it is possible that phasic DA release may serve to
activate this pathway selectively and promote movement. The
importance of phasic DA release for reinforcement learning is
well established, but a role in movement initiation is only
beginning to emerge.log’110 Therefore, understanding of the
dynamics of DA transmission gained through FSCV continues
to add to theories of motor control.

In addition to the activation of functionally distinct neuronal
populations, models of DA volume transmission derived from
FSCV data also predict distinct spatial patterns of influence by
different modes of DA release. Because DA diffuses
extrasynaptically,**'®* a concentration gradient is established
on release that declines with distance from the release site and
time from the release event.***”!!! Activation of receptors by
released DA will be determined by [DA], and receptor affinity.
Assuming that [DA], must equal or exceed the receptor ECy,
Cragg and Rice defined the respective maximum spheres of
influence of DA at high (D2Rs) and low (DIRs and some
D2Rs) affinity receptors as 7 and <2 um.***” Taken together,
the above studies have allowed understanding of how DA
signals that are seemingly globally broadcast via volume
transmission can produce a surprisingly degree of spatial and
functional target specificity.

In excess of 14 5-HT receptors have been identified to date,
which are grouped into 7 families (5-HT,—5-HT,).*® Because
of this pharmacological complexity, receptor affinities are often
characterized in terms of specific ligands, rather than for 5-HT
itself. However, a small number of early studies show that 5-
HT, receptors have a lower affinity for 5-HT than 5-HT,
receptors, giving a K; in the micromolar range.”z’lm
Furthermore, 5-HT¢ and 5-HT, receptors have extremely
high affinity for S-HT (K; ~ 5 nM''*), which exceeds that of 5-
HT, receptors by an order of magnitude."'*''"® Therefore,
evidence suggests that the affinity of different 5-HT receptors
for 5-HT spans at least 2—3 orders of magnitude.

Zero net flux microdialysis studies estimate basal S-HT levels
to be between 0.5 and 7 nM, depending on the species and
brain region.''®""*" Therefore, it is possible that ambient [$-
HT], may be low enough to leave unoccupied all but the
highest affinity receptors during tonic firing (but see caveat
below). This means that increases in S-HT levels, whether they
result from bursting or sustained increases in firing, might
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target different populations of receptors and/or neurons. In
addition, 5-HT,, and S-HT, receptors, which are coupled to
different signaling cascades and have different affinities for S-
HT, have been colocalized to the same forebrain pyramidal
cells."*” This raises the interesting possibility that S-HT might
produce different effects on the same cell according to the
magnitude of release. In this example, moderate increases in $-
HT could modulate pyramidal cell activity via S-HT, cells,
while larger increases in 5-HT might also cause S-HT,,
receptor-mediated changes in excitability. Therefore, funda-
mental features exist within the 5-HT system that could allow
different levels of 5-HT to target distinct pathways selectively or
to affect the same neuron differently. Note though that
additional factors will influence whether receptors are activated
(e.g, proximity to release sites), and therefore, modeling
studies will be needed to explore this further. However, if it
holds, such a possibility could in part explain the diversity of
behaviors influenced by 5-HT.'** As a caveat to this argument,
it is noteworthy that no-net-flux estimates of [DA], have been
shown to underestimate DA levels due to tissue damage caused
by the large probe size."”*'>> This raises the possibility that
current estimates of [S-HT], are inaccurate. Therefore, FESCV
studies establishing basal and evoked [S-HT], will be important
in determining whether differential activation of S-HT
receptors by different levels of [S-HT], is plausible.
Investigation of the postsynaptic effects of specific S-HT
receptor subtypes should also be aided by improved design of
specific ligands resulting from recent studies."*®

FSCV study of 5-HT transmission will allow understanding
of the distinct dynamics governing 5-HT transmission and
allow a more dynamic picture of 5-HT transmission to emerge.
In turn, this should allow a better framework for understanding
how S5-HT governs brain function and behavior.

Modulation of Activity-Dependent Plasticity: Distinct
Roles of Different Receptors. The above section discussed
the ways that exploration of the subsecond dynamics of DA
transmission has facilitated modeling of how DA activates
postsynaptic neurons to mediate movement. In addition, these
concepts have combined with data from electrophysiology
studies of synaptic plasticity to inform ideas on how DA
mediates learning. S-HT also exerts control over activity
dependent changes in synaptic strength, although these effects
appear to be conflicting and complicated. Better understanding
of the action of 5-HT on synaptic strength may contribute to
understanding how it mediates control of behavior at a synaptic
level.

In the striatum, DA controls plasticity at synapses between
excitatory cortical inputs and MSNs by determining whether a
synapse will show potentiation or depression.'*” Early studies
suggested that, in contrast to other regions, plasticity in the
striatum required DA."”®'*® Furthermore, evidence suggested
that D1Rs were necessary for long-term potentiation
(LTP"™°7"), while D2Rs were necessary for long-term
depression (LTD)"®**'** (although see refs 135 and 136
for full reviews of the topic). Given that direct MSNs
preferentially express D1Rs and indirect MSNs preferentially
express D2Rs, these findings seemed to suggest that only one
direction of plasticity would be seen in each population of
MSNs. Studies have since demonstrated the existence of
bidirectional plasticity in both direct and indirect
MSNs, 2713537138 15 3 seminal study, Shen et al. demon-
strated that DIRs were indeed important for L'TP in direct
MSNs but that L'TP in indirect MSNs was mediated by
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adenosine 2a receptors.'>” This group also showed that D2Rs
mediated LTD, but that the D2Rs responsible are most likely
located on cholinergic interneurons and thus the requirement
of D2R activation for LTD does not preclude its expression in
both MSN populations.'*”** Therefore, DA is not required for
plasticity to occur but rather, the balance of DIR/A2a and D2R
activation determines whether it is LTP or LTD that is
expressed. Understanding of DA-modulated plasticity has had
important consequences for understanding how DA release
modes govern learning at the synaptic level.

Given that D1Rs may be preferentially activated by phasic
DA release, it might be predicted that phasic DA release would
promote LTP. This is supported to some extent by the fact that
transient, pulsatile DA application (which more closely mimics
phasic DA release than bath application)'*® and phasic
stimulation of DA neurons'® lead to LTP, rather than
LTD."*" Findings overall support an important role for DA
in modulating synaptic plasticity. Additionally, the DA
receptors involved and the prevailing mode of DA release
may dictate whether synaptic strength is depressed or
potentiated. These concepts have fostered the current view of
reward learning and action selection: phasic DA release elicited
by reward acts upon active synapses that are mediating
movement to promote LTP and learning of the movement.
By contrast, synapses mediating unsuccessful actions undergo
LTD.">'* Although this view is likely still oversimplified, it
illustrates how knowledge of DAergic control of synaptic
plasticity has informed understanding of behavioral control.

A reasonable body of evidence implicates S-HT in
modulating activity-dependent changes in the strength of
mammalian central synapses (see below). Furthermore,
molecular machinery by which 5S-HT could influence LTP is
now identified."** However at present, existing studies are too
few to provide a clear picture of how 5-HT controls activity-
dependent plasticity.

Early studies in cat visual cortex implicated 5-HT,¢ receptors
in the facilitation of activity-dependent plasticity. At first
however, their precise involvement was unclear: in around half
of cases, 5-HT receptor activation during induction would
result in LTP, while in the other half LTD was seen. It was
subsequently shown that the direction of plasticity depended
on whether there was a high density of 5-HT,: receptors
present (LTP) or a low density (LTD)."**~'*” Plasticity has
also been investigated in rat visual cortex, and hippocampus.
Overall, studies show that 5-HT,,, S-HT,,, and S-HT,
receptors are imlportant but can either inhibit'**~"** or facilitate
plasticity.*>'*856157 Interestingly, such findings are reminis-
cent of the apparent conflict in early findings of D1- and D2-
dependence of LTP and LTD, as well as of the literature
concerning 5-HT,c modulation of plasticity discussed above.
Therefore, it is possible that variable receptor density or
involvement of distinct receptors under different experimental
conditions may explain the variability in findings. Improved
understanding of how S5-HT modulates synaptic plasticity
would be of great use in modeling its role in emotional learning,

B MEASUREMENT OF TRANSMISSION IN REAL-TIME
DURING BEHAVIOR: INSIGHTS INTO BEHAVIORAL
CONTROL

A large body of work has detailed the effects of S-HT
manipulations on behavior. However, assigning a specific role
for S-HT in behavioral control has been problematic. S-HT is
implicated in many behaviors, with the most notable being
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behavioral inhibition, anxiety, and depression. Although
relationships exist describing how 5-HT levels relate to each
of these behaviors, no clear unified theory has emerged that
easily incorporates all of these relationships. The animal
literature strongly suggests that S-HT is anxiogenic, while
lowering 5-HT precipitates depression in vulnerable individuals.
And yet anxiety and depression are often comorbid and chronic
inhibition of 5-HT uptake effectively treats both anxiety and
depression.3’4’158_160 Furthermore, simple decreases in S-HT
levels do not induce depression in healthy individuals, nor does
elevating 5-HT immediately alleviate depression in patients. >
In the case of impulsivity, different 5-HT receptor subtypes
appear to have opposing effects on the same impulsivity
Direct correlation of online, real-time S-HT
release would greatly aid understanding of how S-HT controls
behavior. Unfortunately, to date, technical challenges have
precluded such studies. Instead, electrophysiology has been
employed to correlate 5-HT firing patterns with behavior,
although these studies are not without their challenges. This
section will discuss these challenges further after summarizing
current understanding of how firing patterns correlate with
behavior.

Early electrophysiology studies correlating DA neuron
activity with behavioral events showed that phasic DA activity
behaved as a reward prediction error used by reinforcement
learning algorithms. Thus, DA neurons show phasic firing in
response to better-than-expected outcomes and pause in
response to worse-than-expected outcomes.*”'**71**  Com-
bined with knowledge of how firing translates into DA release
and DA-mediated control of synaptic plasticity, this finding
greatly aided understanding of how the actions of DA at a
synaptic level might govern reward-related and motor learning
to modulate behavior. Subsequent in vivo FSCV studies
confirmed that phasic DA release is elicited under similar
circumstances to phasic firing and is both necessary and
sufficient for reward seeking behavior."'*'*~'¢” Additional
information carried in DA sig]nals, such as reward value and risk,
has also been reported."®*”""° In addition to a well-established
role in reward, a minorit?l of DA neurons show phasic activation
to aversive events.'”'”'’* These neurons are distinct from
reward-activated DA neurons and are found in different
anatomical locations.'”'™'”® The characteristics of these
subpopulations and their precise anatomical targets are yet to
be fully explored. However, it seems possible that these DA
neurons mediate aversion learning in distinct brain regions to
reward learning but through similar effects on synaptic
plasticity.

Many studies have correlated 5-HT neuron activity with
behavioral events. Early studies examined spontaneous behavior
and ascribed a role for 5-HT neuron activity in attention.
Putative 5-HT neurons showed phasic increases in activity in
response to short, unexpected visual and auditory stimuli.'”>"”®
However, other studies reported that such cells were
unresponsive to stimuli that would be expected to attract
attention such as loud noises, predator exposure and
restraint."”” A sensorimotor role for ascending 5-HT neurons
has also been hypothesized as cells show increased firing to
sensorimotor parameters during operant responding (e.g.,
direction of response'’®) as well as during putative central
pattern generator-mediated movements, e.g. chewing, licking,
biting and grooming.'”” More recently, a correlation of neural
activity with reward and/or aversion has been reported that is
predicted by a large literature detailing anxiety and aversion in

measures.
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response to pharmacological manipulations of S-HT."¥'*° In

anesthetized rats, phasic activation in response to an “aversive”
toe-pinch has been reported,® while during behavior studies
have found that firing tracks progress to future reward'®" and
received reward value.'”®"'®* These results have led to theories
that S-HT serves as a companion or opponent to DA in reward
processing."**'** However, other studies have reported no
response to reward, reward omission, or aversive
events.'’¥!81%% A dlightly different take on S-HT in reward
processing is that S-HT transmission is necessary for waiting,
either to gain reward or to avoid punishment. During delayed
reward delivery, tonic firing of 5S-HT neurons increases during
the waiting period and ceases immediately preceding an animal
leaving the reward port.'® Treatment with a drug that dampens
5-HT neuron firing decreased waiting for reward in this task.'®
This group advanced the idea that 5-HT serves in reinforce-
ment learning to discount future rewards and punishments,
representing the discount factor in the same reinforcement
learning algorithm that incorporates the reward prediction error
that DA encodes.'**"*’

A key difficulty for identifying physiologically relevant
responses in 5-HT neurons is understanding which neuronal
responses are meaningful for transmission. Recent FSCV
studies suggest that 5-HT release is under very strict regulation
in vivo.”" Therefore, it is possible that brief and/or modest
changes in firing frequency may have little or no influence on S-
HT release. FSCV determination of the possible modes of 5-
HT release in vivo will therefore be beneficial for interpreting
findings of electrophysiological studies of S-HT neurons during
behavior.

An additional challenge for correlating neural activity with
behavior is correct identification of S-HT neurons. Increasing
evidence suggests that the population of DRN 5-HT neurons is
highly heterogeneous and exhibits no single “signature” of
electrophysiological characteristics."®® Recent studies have
shown that non-S5-HT cells can exhibit similar characteristics
to those classically used to identify S-HT cells (slow spiking,
broad action potential, clocklike firing®®) and vice versa,***%'%
Although juxtacellular labeling has been incredibly informative
for identifying such heterogeneity, applying this technique after
behavioral studies to identify recorded cells is difficult.
Recently, optogenetics has been applied to identify subtypes
of electrophysiologically identical cells in vivo.'®® Therefore,
this approach may prove fruitful in studying 5-HT.

B CONCLUSIONS AND FUTURE DIRECTIONS

Understanding DA transmission on a time scale commensurate
with neuronal signaling events has facilitated progress toward
an integrated model of how DA governs behavior. Similar
understanding of subsecond 5-HT signaling has been hampered
by technical challenges but is now beginning to emerge. This
Review has compared what is known of the subsecond
dynamics of DA and S-HT transmission and how these are
thought to relate to behavioral control in the case of DA.
FSCV characterization of the dynamics and regulation of 5-
HT release in vivo will be important for establishing whether
distinct modes of S-HT release occur, as well as for providing
estimates of basal S-HT levels in the absence of potentially
confounding tissue damage. In turn, this information will
inform on whether different modes of S-HT release might
mediate distinct postsynaptic effects, as is likely for DA.
Furthermore, FSCV data will serve as an important companion
to electrophysiology studies correlating activity with behavior,
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by informing on physiologically meaningful changes in S-HT
activity. Understanding whether and how S-HT controls
activity-dependent plasticity may also aid in understanding
how it governs behavior. In addition, application of newly
developed optogenetic technology will greatly aid the study of
the S-HT system. First, it will facilitate FSCV investigation of $-
HT by allowing selective stimulation of S-HT release in brain
regions receiving input from multiple monoamines. Second, it
will allow accurate identification of S-HT cells in electro-
physiological experiments correlating activity with behavior.
Establishment of fundamental aspects of S-HT release and how
these relate to firing patterns at high temporal resolution should
ultimately advance understanding of S-HT function in health
and disease and enable improved treatment of serotonin-related
disorders, such as depression and anxiety.
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